Senin, 31 Januari 2011

Kimia Analisa Kualitatif

            Kimia analisa kuantitatif  jika ditinjau dari banyaknya sample, maka dapat dibagi menjadi:
1.      Banyak/makro: > 0,1 gr
2.      Sedikit/semimikro: 10 – 100 mg
3.      Sangat sedikit/mikro: 1 – 10 mg
4.      Sangat sedikit sekali: < 1 mg (tidak dapat dititrasi sehingga harus menggunakan alat seperti AAS, UV, GC, HPLC, NMR)
            Kimia analisa kuantitatif digunakan unuk menganalisa jumblah analit yang kita inginkan dari sample. Sedangkan sampel adalah materi yang akan dianalisa, dapat berupa padatan, larutan, atau gas. Analit adalah zat atau unsur yang akan ditentukan kadar atau kensentrasinya.
            Langkah-langkah yang dilakukan untuk menganalisa sampel:
1.      Studi literatur (menganalisa secara teori)
2.      Teknik (cara pengambilan sampel)
3.      Membuat sambel menjadi bentuk terukur
4.      Pengukuran (titrasi, gravimetri, atau instrument)
5.      Pengumpulan data dari hasil pengukuran
6.      Perhitungan-perhitungan
7.      Hasil perhitungan dan kesimpulan.



TITRASI
            Titrasi adalah sustu proses pada sejumlah zat tertentu dimana suatu larutan yang tidak deketahui konsentrasinya dietesi secara terus menerus oleh larutan lain yang diketahui konsentrasinya sehingga kedua larutan tersebut saling bereaksi sehingga terjadi grek yang sama.
            Titrasi dapat digolongkan menjadi beberapa golongan, antara lain sebagai berikut:
1.      Analisa volumetris (dasar perhitungan/pengukuran berdasaran volume).
Terdiri dari:
a.       Titrasi asam basa
1)     Asam kuat dan basa lemah
2)     Asam lemah dan basa kuat
Contoh: HCl + NaOH  à  NaCl  +  H2O
b.      Titrasi oksidasi reduksi
Dalam hal ini digunakan oksidator: dasar reaksi adalah reaksi oksidasi dan reaksi reduksi.
1.      KMnO4 digunakan untuk titrasi permanganometri
2.      I2 digunakan untuk titrasi iodometri langsung
Contoh: MnO4-  +  Fe2+  à  Mn2+  +  Fe3+
              I2  +  Cu  à  I-  +  Cu2+
3.      Na2S2O3 digunakan untuk titrasi iodimetri (iodometri tidak langsung)
c.       Titrasi pengendapan
Menggunakan reaksi pembentukan senyawa kompleks dengan menggunakan ligan EDTA sebagai peniter.

2.      Analisa gravimetris (penimbangan)
Didasarkan atas penimbangan/berat
Contoh: Ba2+  +  H2SO4  à  BaSO4 + H2O
            Dalam proses titrasi ada beberapa alat yang biasa digunakan untuk proses titrasi tersebut. Ada pun alat-alat tersebut adalah sebagai berikut:
1.      Neraca analitik: untuk menimbang sampel dan hasil

2.        Buret        : pipa glas yang panjang berbentuk silinder dan salah satu ujungnya kecil/menyempit.
Untuk membaca volume suatu buret yang berisi cairan maka baca permukaan yang paling rendah (miniskus bawah).
Buret terbagi menjadi dua bagian yaitu:
a.       Buret yang ujungnya kecil disambungkan dengan suatu selang karet yang kecil dan pendek kemudian selangnya dimasukkan ke tube gelas yang kecil untuk keluarnya cairan. Namun buret ini tidak tahan terhadap asam atau basa kuat.
b.      Buret yang tahan terhadap asam atau basa yang terbuat dari gelas seluruhnya tanpa selang karet pada ujungnya yang mengecil dan dipasang keran yang dapat dibuka dan tutup untuk keluarnya cairan dari buret.


3.      Statif         : sebagai tempat berdirinya buret;


4.        Pipet         : suatu gelas yang kecil yang te ngahnya ada bagian yang membesar (perut) dan ujung bawahnya sedikit meruncing pada bagian atasnya ada suatu tanda batas yang artinya jika pipet itu diisi dengan cairan hingga garis itu maka volume yang tertera pada pipet berfungsi mengambil volume sampel.


5.        Labu ukur: suatu labu gelas yang memiliki leher yang panjang dan diberikan skala berupa garis di lehernya dan berarti bila diisi dengan cairan hingga garis tanda maka volume cairan itu sama dengan volume yang tertera pada labu. Biasanya digunakan untuk pengenceran suatu larutan.



6.        Gelas ukur  : suatu gelas kaca yang keras dan panjang dan diberi skala berupa garis-garis biasanya besarnya sekala sebesar 1 ml kemudian skala tersebut dibagi –bagi menjadi skala yang lebih kecil misalnya: 0,1 ml. biasanya gelas ukur yang digunakan untuk penentuan volume suatu larutan yang dipakai sebagai zat pelengkap (reagensia) untuk suatu titrasi tetapi larutan itu sendiri tidak larut dalam perhitungan volume maka dalam pengukuran itu harus tepat benar.

Sabtu, 15 Januari 2011

UV-Visible

Spektrofotometer UV-VIS merupakan alat dengan teknik spektrofotometer pada daerah ultra-violet dan sinar tampak. Alat ini digunakan guna mengukur serapan sinar ultra violet atau sinar tampak oleh suatu materi dalam bentuk larutan. Konsentrasi larutan yang dianalisis sebanding dengan jumlah sinar yang diserap oleh zat yang terdapat dalam larutan tersebut. Dalam hal ini, hukum Lamber-Beer dapat menyatakan hubungan antara serapan cahaya dengan konsentrasi zat dalam larutan. Di bawah ini adalah persamaan Lamber-Beer ;


A = - log T = εb c

Dengan

A = absorban,
T = transmitan,
Ε = absortivitas molar (Lcm-1.mol-1),
b = panjang sel (cm), dan c = konsentrasi zat (mol/L).

Spektrum absorpsi yang diperoleh dari hasil analisis dapat memberikan informasi panjang gelombang dengan absorban maksimum dari senyawa atau unsur. Panjang gelombang dan absorban yang dihasilkan selama proses analisis digunakan untuk membuat kurva standar. Konsentrasi suatu senyawa atau unsur dapat dihitung dari kurva standar yang diukur pada panjang gelombang dengan absorban maksimum. Dari kurva standar kalibrasi, diperoleh persamaan garis
Y = ax + b
Dimana Y merupakan serapan dan x adalah konsentrasi unsur atau senyawa. Dengan persamaan garis tersebut dapat ditentukan konsentrasi sampel. Pada spektrofotometer UV-VIS, warna yang diserap oleh suatu senyawa atau unsur adalah warna komplementer dari warna yang teramati.Hal tersebut dapat diketahui dari larutan berwarna yang memiliki serapan maksimum pada warna komplementernya. Namun apabila larutan berwarna dilewati radiasi atau cahaya putih, maka radiasi tersebut pada panjang gelombang tertentu akan diserap secara selektif sedangkan radiasi yang tidak diserap akan diteruskan.
Beberapa warna yang diamati dan warna komplementer terdapat pada table 1.1. Contohnya adalah, hijau memiliki warna komplementer merah dan akan menyerap radiasi pada panjang gelombang sekitar 700 nm.


Adanya perpindahan elektron dalam atom atau molekul ke tingkat energi yang lebih tinggi merupakan akibat dari antaraksi antara materi dengan sinar elektromagnetik. Besarnya perpindahan elektron sama dengan energi radiasi yang berineraksi dengan molekul. Eksitasi elektron ketingkat energi yang lebih tinggi tergantung pada senyawa penyerapnya (kromofor penyerap).

Eksitasi elektron dari tingkat energi dasar ketingkat ketingkat energi yang lebih tinggi melelui dua tahap, yaitu sebagai berikut :

Tahap 1 ( Absorpsi ) = M +hv M*
Tahap 2 ( Relaksasi ) = M* M +heat

Tahap pertama adalah eksitasi M yang disebabkan oleh absobsi foton (hv) dan memiliki waktu hidup 10-8 - 10-9 detik. Sedangkan tahap kedua merupakan relaksasi M* menjadi spesies yang baru dengan reaksi fotokimia. Serapan pada daerah ultraviolet mengakibatkan eksitasi elektron ikatan.Ikatan-ikatan yang ada dalam spesies dapat dihubungkan dengan puncak absobsi atau panjang gelombang maksimum.
Adapun spesies yang mengabsobsi dapat melekukan transisi meliputi ;
a) Zat pengabsorbsi yang mengandung elektron π, δ dan n-elektron

Zat pengabsorbsi terjadi pada molekul-molekul organik dan sedikit anion anorganik. Senyawa tersebut memiliki elektron valensi yang dapat dieksitasi ketingkat energi yang lebih tinggi sehingga senyawa ini dapat menyerap cahaya yang dipancarkan. Untuk mengeksitasi elektron pembentuk ikatan tunggal diperlukan energi yang cukup tinggi sehingga penyerapannya terbatas pada daerah UV vakum atau pada panjang gelombang lebih dari 185 nm. Sedangkan penyerapan yang terjadi pada daerah yang lebih besar dari daerah UV vakum terbatas pada sejumlah gugus fungsi ( chromofore ) yang memiliki elektron valensi dengan energi eksitasi rendah.
Eksitasi elektron n ke orbital π* dalam ikatan ganda terjadi pada saat sinar UV-VIS diserap oleh molekul yang dianalisis dan transisi yang terjadi adalah n → π*.
Pada umumnya tingkat energi elektron nonbonding terdapat pada orbital- orbital π dan δ bonding dan antibonding. Penyerapan terhadap radiasi dapat menyebabkan transisi elektron diantara tingkat elektron tertentu. Pada gambar 5.2 dapat dilihat jenis transisi yang mungkin terjadi pada saat analisis, diantaranya δ → δ*, n → δ*, n → π*, dan π → π*.


Gambar 5.1 tingkat energi elektron molekul
Kromofor Allena ( C6H13CH=CH2 ), pelarut n-heptan merupakan kromofor organik yang memiliki panjang gelombang maksimum 177 nm. Data panjang gelombang tersebut hanya mampu member petunjuk kasar yang digunakan untuk mengidentifikasi gugus fungsional. Hal ini disebabkan posisi maksimum dipengaruhi pelarut serta struktur molekul kromofor.
Kromofor dan ausokrom mempengaruhi penyerapan cahaya pada spektrofotometer UV-VIS. Kromofor merupakan gugus yang dapat menyerap sinar UV-VIS, sedangkan ausokrom adalah gugus yang tidak dapat menerap radiasi, tetapi dapat menggeser panjang gelombang maksimum atau meningkatkan єmax.
Berikut adalah tabel gugus-gugus penyerap cahaya pada panjang gelombang UV-VIS (kromofor).
Tabel 1.2 gugus-gugus penyerap cahaya pada λ UV-VIS (kromofor) :

b) Absorbsi yang melibatkan elekttron d dan f
Elektron-elektron pada orbital f menyerap cahaya UV mengkibatkan terjadinya transisi logam golongan f. Sedangkan unsur-unsur yang tergolong pada orbital d dapat menyerap cahaya UV dan cahaya tampak. Sementara itu, proses penyerapan pada unsur-unsur transisi dalam seperti lantanida dan aktinida menyebabkan terjadinya transisi elektron pada 4f dan 5f. Untuk transisi 3d dan 4dmemiliki pita lebar dab biasanya terdeteksi pada daerah sinar tampak. Puncak-puncak absorpsi yang terbentuk dipengaruhi lingkungan yang mengelilinginya. Dengan menggunakan teori medan kristal diketahui bahwa dengan adanya ligan, orbital t2g ( dxy, dyz,dzx ) dan orbital eg terpecah sebesar∆ .besarnya splitting pada ligan dapat dilihat dalam deret spektrokimia berikut ini,
I- < Br- < Cl- < F- < OH- < oksalat2- < H2O < SCN- < NH3 < en < NO2- < CN-.

c) Absorbsi perpindahan muatan
Kompleks perpindahan mauatan merupakan akibat dari komplek anorganik yang memperlihatkan perpindahan muatan. Salah satu contohnya adalah kompleks besi (II) o-penentrolina.
Suatu komplek dapat menunjukan spektrum perpindahan elektron apabila salah satu dari komponen komplek tersebut memiliki sifat penyumbang elektron atau dapat dikatakan sebagai pendonor sedangkan komponen lainnya bersifat penerima atau akseptor elektron.
Perpindahan elektron dari donor elektron ke akseptror elektron merupakan akibat dari penyerapan radiasi, sehingga bentuk tereksitasi merupakan hasil dari proses oksidasi reduksi internal. Semakin kecil energi yang diperlukan untuk proses perpindahan elektron , menyebabkan komplek menyerap radiasi pada panjang gelombang lebih besar.


Spektrofotometer UV-VIS dapat digunakan untuk analisis kualitatif
maupun analisis kuantitatif.

 Analisis Kualitatif
Penggunaan alat ini dalam analisis kuantitatif sedikit terbatas sebab spektrum sinar tampak atau sinar UV menghasilkan puncak-puncak serapan yang lebar sehingga dapat disimpulkan bahwa spektrum yang dihasilkan kurang menunjukan puncak-punca serapan. Namun, walaupun puncak yang dihasilkan bebentuk lebar, puncak tersebut masih dapat digunakan untuk memperoleh keterangan ada atau tidaknya gugus fungsional tertentu dalam suatu molekul organik.
 Analisis Kuantitatif
Penggunaan sinar UV dalam analisis kuantitatif memberikan beberapa
keuntungan, diantaranya ;
Dapat digunakan secara luas
Memiliki kepekaan tinggi
Keselektifannya cukup baik dan terkadang tinggi
Ketelitian tinggi
Tidak rumit dan sepat

Adapun langkah-langkah utama dalam analisis kuantitatif adalah ;
•Pembentukan warna ( untuk zat yang yang tak berwarna atau warnanya kurang kuat ),
•Penentuan panjang gelombang maksimum,
•Pembuatan kurva kalibrasi,
•Peangukuran konsentrasi sampel.
Larutan-larutan standar sebaiknya memiliki komposisi yang sama dengan komposisi cuplikan sementara konsentrosi cuplikan berada diantara konsentrasi-konsentrasi larutan standar.

Dengan membandingkan serapan radiasi oleh sampel terhadap larutan standar yang telah diketahui konsentrasinya dapat ditentukan konsentrasi sampel. Penentuan konsentrasi zat dalam contoh dapat ditentukan dengan dua cara, yaitu dengan cara kurva kalibrasi dan cara standar adisi.

Cara kurva kalibrasi. Hal pertama yang dilakukan denagn menggunakan cara ini adalah pembuatan deret larutan standar, kemudian diukur serapannya dan dibuat kurva kalibrasi antara konsentrasi dengan serapan. Dengan mengukur serapan sampel dan memesukannya kedalam persamaan garis yang dihasilkan dari kurva kalibrasi, maka konsentrasi sampel akan diketahui


absorbansi
konsentrasi
Gambar 5.2 kurva kalibrasi

Cara standar adisi dilakukan dengan cara menambahkan sejumlah larutan sampel yang sama ke dalam larutan standar. Cara ini menggunakan persamaan Lamber-Beer,Ac = ε.b.Vx.Cx + ε.b.Vs.Cs
Vt Vt

Dimana Ac merupakan absorbansi campuran antara sampel dan standar sedangkan Vx, Vs, Vt adalah volume standar, volume standar dan volume total. Sedangkan Cx dan Cs adalah konsentrasi sampel dan standar. Kurva Ac diperoleh dengan cara mengikuti persamaan di atas. Dimana kurva Ac merupakan fungsi dari Vs dan berbentuk linier. Dengan menggunakan persamaan tersebut juga dapat ditentukan konsentrasi sampel ( Cx ).

Spektrofotometer merupakan alat yang terdiri dari spektrometer dan fotometer. Dimana spektrometer merupakan alat yang dapat menghasilkan spektrum yang diperoleh dari sinar dengan panjang tertentu, sedangkan fotometer adalah alat yang memiliki fungsi untuk mengukur intensitas cahaya yang diserap maupun yang diteruskan. Maka dapat disimpulkan bahwa spektrofotometer merupakan alat yang digunakan untuk mengukur energi secara selektif apabila energi tersebut diteruskan, direfleksikan, atau diemisikan sebagai panjang gelombang.

Spektrofotometer yang digunakan adalah spektronik 20. Alat ini memiliki panjang gelombang pada rentang 340 nm – 600 nm. Larutan berwarna yang akan dianalisis diletakan ke dalam tabung kufet untuk kemudian diletakan pada tempat cuplikan dan absorbsi atau % transmitan dapat dilihat pada skala pembaca.

Spektroskofi UV-VIS memiliki instrumentasi yang terdiri dari lima komponen utama, yaitu ;
Sumber radiasi
Wadah sample
Monokromator
Detektor
Rekorder

Gambar 5.3 alat spektonik 20



Gambar diatas adalah gambar alat spektronik 20 yang sering digunakan.
Gambar 5.3 alat spektonik 20
Sumber radiasi yang digunakan oleh spektronik 20 adalah lampu wolfram atau sering disebut lampu tungsten. Arus cahaya pada lampu tungsten tergantung pada tegangan lampu dan eksvonen, i = kVn. Adapun kelebihan dari lampu wolfram adalah energy radiasi yang dilepaskan tidak berpariasi pada berbagai panjang gelombang. Wadah sampel yang digunakan pada umumnya disebut sel atau kuvet.

Kuvet yang baik untuk spektroskopi ultra violet dan spektroskopi sinar tampak adalah kuvet yang terbuat dari kuarsa. Sektroskopi ultra violet biasanya menggunakan panjang sel 1 cm serta ada juga yang panjangnya 0,1 cm. Monokromator digunakan sebagai alat penghasil sumber sinar monokromatis, kata lainnya adalah menghasilkan radiasi dengan satu panjang gelombang. Monokromator prisma, celah, lensa serta cermin. Celah digunakan untuk mengarahkan sinar monokromatis yang diharapkan dari sumber radiasi.

Apabila celah berada pada posisi yang tepat, maka radiasi akan dirotasikan melalui prisma sehingga diperoleh panjang gelombang yang diharapkan. Detektor berfungsi untuk menangkap sinar yang merupakan sinar terusan dari larutan. Di dalam amplifier sinar tersebut diubah menjadi signal listrik. Dan di dalam rekorder signal tersebut direkam sebagai spektrum yang berbentuk puncak-puncak. Spektrum absorpsi merupakan plot antara absorbans sebagai ordinat dan panjang gelombang sebagai absis.





Adapun diagram dari alat tersebut adalah sebagai berikut ;





Tidak semua pelarut dapat digunakan dalam spektrofotometri. Pelarut yang digunakan dalam spektrofotometri adalah pelarut yang dapat melarutkan cuplikan serta tidak menyerap sinar yang digunakan sebagai sumber radiasi.
. The Woodward-aturan Fieser adalah serangkaian pengamatan empiris yang dapat digunakan untuk memprediksi λmax , yang panjang gelombang yang paling intens UV / Vis penyerapan, untuk conjugated compounds organik seperti dienes dan ketones.
The wavelengths penyerapan puncak dapat berhubungan dengan jenis obligasi yang ada pada molekul dan berharga dalam menentukan kelompok fungsional dalam molekul. UV / Vis penyerapan tidak Namun, khusus untuk menguji setiap kompleks. Sifat dari larutan, dengan pH dari solusi, suhu, konsentrasi elektrolit tinggi, dan adanya campur zat dapat mempengaruhi penyerapan Spectra dari compounds, seperti variasi di celah lebar (bandwidth efektif) di spectrophotometer.

Air minum dalam kemasan


 Manfaat Air Minum Bagi Kesehatan Tubuh

Sekitar 75% dari tubuh manusia terdiri atas air. Semua cairan tubuh, termasuk darah, urine, keringat, ludah, dan limpa mengandung air. Air diperlukan tubuh untuk ditoksifikasi (pemusnahan racun), untuk menjaga kesehatan kulit dan selaput-selaput mukosa, serta fungsi sel dan kesehatan setiap sistem organ tubuh pasti bergantung pada air. Sayangnya, banyak orang yang tidak minum air dalam jumlah cukup.
Padahal, kurang minum dapat menyebabkan dehidrasi dan apabila tidak sepat diatasi dapat menyebabkan kematian. Sayangnya, air minum dalam kemasan di kehidupan modern ini acap tercemar logam-logam berat, mikrooganisme, klorin, fluoride, dan zat-zat pengotor lainnya. Banyak yang percaya bahwa salah satu bentuk air yang terbaik adalah air yang berasal dari sumber yang teruji. Bila tidak memperoleh air terbaik ini, tingkatkan kualitas air minum dengan menyaringnya dengan sistem pembalikan osmosis, arang kayu, keramik, atau filter kualias tinggi lainnya (Bunda, edisi 182, Agustus 2004).


Manfaat air putih pada umumnya adalah membuat kulit sehat, menurunkan berat badan, menghilangkan racun, mengurangi serangan jantung, dalam hal ini sebuah penelitian di Loma Linda University telah diketahui bahwa di antara 20.000 pria dan wanita sehat, yang meminum lebih dari lima gelas air putih dapat terhindar dari serangan atau penyakit jantung dibandingkan mereka yang meminum air putih tidak lebih dari dua gelas perharinya. Manfaat lainnya adalah sebagai pelindung dan pelumas persendian otot, buang air besar teratur, bersemangat dan tetap siaga, menstabilkan suhu tubuh, mengurangi resiko penyakit dan infeksi, dan lebih baik, atau bisa dikatakan resep tradisional mengatakan minum banyak air putih ketika sakit sangat manjur, seperti mengontrol demam, mengganti cairan yang hilang, dan mengurangi lendir di hidung.






BAB II
PROSEDUR KERJA

2.1 Alat dan Bahan
a. Alat yang digunakan
• lampu deuterium
• Monokromator
• Cell/kuvet
• Detector
• Indikator
• Pipet mili
• Pipet tetes
• Gelas ukur
• Buret

b. Bahan yang digunakan
• Pelarut pelarut sampel yang disesuaikan dengan sampel yang diperiksa.
• HCl 1:1
• HONH2HCl
• O.Phenontroline o,1%
• Fe standart
• Larutan buffer

2.2 Prosedur Kerja
a. Prosedur kerja preparasi
1. Pipet larutan stock Fe (1 ml =1µg Fe) 0,0;2,0;.......; 1o ml kedalam labu ukur 50 ml,tambahkan 1 ml HCl 1:1 tambahkan 1 ml HONH2HCl 10 %,tambahkan 5 ml O.phenotrolin .aduk sampai rata dan tambahkan 5 ml buffer asetat 50% dan diaduk kembali sampai merata
2. Lakukan perlakuan yang sama seperti diatas dengan mengganti larutan stock dengan sampel.
3. Ukur warna pakai spektrofotometri pada 510 nm.

b. Prosedur kerja UV Visible Spektofotometer
1. Periksa bahwa tidak terdapat sampel didalam cell compartment
2. Periksa posisi setiap switch,harus pada posisi off atau posisi semula.
3. Nyalakan power switch.
4. Pilihlah lampu yang sesuai, nyalakan sesuai dengan range panjang gelombang yang akan diukur. Lampu D2 untuk range 190-380 nm. Lampu W untuk range 380-900 nm.
5. Melalui knop panjang gelombamg ,atur panjang gelombang yang dikehendaki.
6. Periksalah 0% T dengan meletakkan sutheer block pada sampel beam , display harus menunjukan 0% T
7. Letakkan cell-cell berisi pelarut pada refeernce dan sampel beam atur agar absorbsinya 0 atau 100% Y
8. Letakkan cell berisi sampel yang akan diukur pada sampel beam .nbaca hasilnya pada display.




BAB III
GAMBAR RANGKAIAN

3.1 Gambar alat



3.2 Gambar rangkaian

AAS (Atomic Absorbsion Spektrophotometri)

Spektrofotometer Serapan Atom (AAS) adalah suatu alat yang digunakan pada metode analisis untuk penentuan unsur-unsur logam dan metaloid yang berdasarkan pada penyerapan absorbsi radiasi oleh atom bebas.
Spektrofotometer serapan atom (AAS) merupakan teknik analisis kuantitafif dari unsur-unsur yang pemakainnya sangat luas di berbagai bidang karena prosedurnya selektif, spesifik, biaya analisisnya relatif murah, sensitivitasnya tinggi (ppm-ppb), dapat dengan mudah membuat matriks yang sesuai dengan standar, waktu analisis sangat cepat dan mudah dilakukan. AAS pada umumnya digunakan untuk analisa unsur, spektrofotometer absorpsi atom juga dikenal sistem single beam dan double beam layaknya Spektrofotometer UV-VIS. Sebelumnya dikenal fotometer nyala yang hanya dapat menganalisis unsur yang dapat memancarkan sinar terutama unsur golongan IA dan IIA. Umumnya lampu yang digunakan adalah lampu katoda cekung yang mana penggunaanya hanya untuk analisis satu unsur saja.
Metode AAS berprinsip pada absorbsi cahaya oleh atom. Atom-atom menyerap cahaya tersebut pada panjang gelombang tertentu, tergantung pada sifat unsurnya. Metode serapan atom hanya tergantung pada perbandingan dan tidak bergantung pada temperatur. Setiap alat AAS terdiri atas tiga komponen yaitu unit teratomisasi, sumber radiasi, sistem pengukur fotometerik.
Teknik AAS menjadi alat yang canggih dalam analisis. Ini disebabkan karena sebelum pengukuran tidak selalu memerlukan pemisahan unsur yang ditentukan karena kemungkinan penentuan satu unsur dengan kehadiran unsur lain dapat dilakukan, asalkan katoda berongga yang diperlukan tersedia. AAS dapat digunakan untuk mengukur logam sebanyak 61 logam.
Sumber cahaya pada AAS adalah sumber cahaya dari lampu katoda yang berasal dari elemen yang sedang diukur kemudian dilewatkan ke dalam nyala api yang berisi sampel yang telah teratomisasi, kemudia radiasi tersebut diteruskan ke detektor melalui monokromator. Chopper digunakan untuk membedakan radiasi yang berasal dari sumber radiasi, dan radiasi yang berasal dari nyala api. Detektor akan menolak arah searah arus (DC) dari emisi nyala dan hanya mengukur arus bolak-balik dari sumber radiasi atau sampel.
Atom dari suatu unsur pada keadaan dasar akan dikenai radiasi maka atom tersebut akan menyerap energi dan mengakibatkan elektron pada kulit terluar naik ke tingkat energi yang lebih tinggi atau tereksitasi. Jika suatu atom diberi energi, maka energi tersebut akan mempercepat gerakan elektron sehingga
elektron tersebut akan tereksitasi ke tingkat energi yang lebih tinggi dan dapat kembali ke keadaan semula. Atom-atom dari sampel akan menyerap sebagian sinar yang dipancarkan oleh sumber cahaya. Penyerapan energi oleh atom terjadi pada panjang gelombang tertentu sesuai dengan energi yang dibutuhkan oleh atom tersebut.

CARA KERJA AAS :
1. pertama-tama gas di buka terlebih dahulu, kemudian kompresor, lalu ducting, main unit, dan komputer secara berurutan.
2. Di buka program SAA (Spectrum Analyse Specialist), kemudian muncul perintah ”apakah ingin mengganti lampu katoda, jika ingin mengganti klik Yes dan jika tidak No.
3. Dipilih yes untuk masuk ke menu individual command, dimasukkan nomor lampu katoda yang dipasang ke dalam kotak dialog, kemudian diklik setup, kemudian soket lampu katoda akan berputar menuju posisi paling atas supaya lampu katoda yang baru dapat diganti atau ditambahkan dengan mudah.
4. Dipilih No jika tidak ingin mengganti lampu katoda yang baru.
5. Pada program SAS 3.0, dipilih menu select element and working mode.Dipilih unsur yang akan dianalisis dengan mengklik langsung pada symbol unsur yang diinginkan.
6. Jika telah selesai klik ok, kemudian muncul tampilan condition settings. Diatur parameter yang dianalisis dengan mensetting fuel flow :1,2 ; measurement; concentration ; number of sample: 2 ; unit concentration : ppm ; number of standard : 3 ; standard list : 1 ppm, 3 ppm, 9 ppm.
7. Diklik ok and setup, ditunggu hingga selesai warming up.
8. Diklik icon bergambar burner/ pembakar, setelah pembakar dan lampu menyala alat siap digunakan untuk mengukur logam.
9. Pada menu measurements pilih measure sample.
10. Dimasukkan blanko, didiamkan hingga garis lurus terbentuk, kemudian dipindahkan ke standar 1 ppm hingga data keluar.
11. Dimasukkan blanko untuk meluruskan kurva, diukur dengan tahapan yang sama untuk standar 3 ppm dan 9 ppm.
12. Jika data kurang baik akan ada perintah untuk pengukuran ulang, dilakukan pengukuran blanko, hingga kurva yang dihasilkan turun dan lurus.
13. Dimasukkan ke sampel 1 hingga kurva naik dan belok baru dilakukan pengukuran.
14. Dimasukkan blanko kembali dan dilakukan pengukuran sampel ke 2.
15. Setelah pengukuran selesai, data dapat diperoleh dengan mengklik icon print atau pada baris menu dengan mengklik file lalu print.
16. Apabila pengukuran telah selesai, aspirasikan air deionisasi untuk membilas burner selama 10 menit, api dan lampu burner dimatikan, program pada komputer dimatikan, lalu main unit AAS, kemudian kompresor, setelah itu ducting dan terakhir gas.

Bagian-Bagian pada AAS
a. Lampu Katoda
Lampu katoda merupakan sumber cahaya pada AAS. Lampu katoda memiliki masa pakai atau umur pemakaian selama 1000 jam. Lampu katoda pada setiap unsur yang akan diuji berbeda-beda tergantung unsur yang akan diuji, seperti lampu katoda Cu, hanya bisa digunakan untuk pengukuran unsur Cu. Lampu katoda terbagi menjadi dua macam, yaitu : Lampu Katoda Monologam : Digunakan untuk mengukur 1 unsur Lampu Katoda Multilogam : Digunakan untuk pengukuran beberapa logam sekaligus, hanya saja harganya lebih mahal.
Soket pada bagian lampu katoda yang hitam, yang lebih menonjol digunakan untuk memudahkan pemasangan lampu katoda pada saat lampu dimasukkan ke dalam soket pada AAS. Bagian yang hitam ini merupakan bagian yang paling menonjol dari ke-empat besi lainnya.
Lampu katoda berfungsi sebagai sumber cahaya untuk memberikan energi sehingga unsur logam yang akan diuji, akan mudah tereksitasi. Selotip ditambahkan, agar tidak ada ruang kosong untuk keluar masuknya gas dari luar dan keluarnya gas dari dalam, karena bila ada gas yang keluar dari dalam dapat menyebabkan keracunan pada lingkungan sekitar.
Cara pemeliharaan lampu katoda ialah bila setelah selesai digunakan, maka lampu dilepas dari soket pada main unit AAS, dan lampu diletakkan pada tempat busanya di dalam kotaknya lagi, dan dus penyimpanan ditutup kembali. Sebaiknya setelah selesai penggunaan, lamanya waktu pemakaian dicatat.


b. Tabung Gas
Tabung gas pada AAS yang digunakan merupakan tabung gas yang berisi gas asetilen. Gas asetilen pada AAS memiliki kisaran suhu ± 20000K, dan ada juga tabung gas yang berisi gas N2O yang lebih panas dari gas asetilen, dengan kisaran suhu ± 30000K. regulator pada tabung gas asetilen berfungsi untuk pengaturan banyaknya gas yang akan dikeluarkan, dan gas yang berada di dalam tabung. Spedometer pada bagian kanan regulator. Merupakan pengatur tekanan yang berada di dalam tabung.
Pengujian untuk pendeteksian bocor atau tidaknya tabung gas tersebut, yaitu dengan mendekatkan telinga ke dekat regulator gas dan diberi sedikit air, untuk pengecekkan. Bila terdengar suara atau udara, maka menendakan bahwa tabung gas bocor, dan ada gas yang keluar. Hal lainnya yang bisa dilakukan yaitu dengan memberikan sedikit air sabun pada bagian atas regulator dan dilihat apakah ada gelembung udara yang terbentuk. Bila ada, maka tabung gas tersebut positif bocor.
Sebaiknya pengecekkan kebocoran, jangan menggunakan minyak, karena minyak akan dapat menyebabkan saluran gas tersumbat. Gas didalam tabung dapat keluar karena disebabkan di dalam tabung pada bagian dasar tabung berisi aseton yang dapat membuat gas akan mudah keluar, selain gas juga memiliki tekanan.

c. Ducting
Ducting merupakan bagian cerobong asap untuk menyedot asap atau sisa pembakaran pada AAS, yang langsung dihubungkan pada cerobong asap bagian luar pada atap bangunan, agar asap yang dihasilkan oleh AAS, tidak berbahaya bagi lingkungan sekitar. Asap yang dihasilkan dari pembakaran pada AAS, diolah sedemikian rupa di dalam ducting, agar ppolusi yang dihasilkan tidak berbahaya.
Cara pemeliharaan ducting, yaitu dengan menutup bagian ducting secara horizontal, agar bagian atas dapat tertutup rapat, sehingga tidak akan ada serangga atau binatang lainnya yang dapat masuk ke dalam ducting. Karena bila ada serangga atau binatang lainnya yang masuk ke dalam ducting , maka dapat menyebabkan ducting tersumbat.
Penggunaan ducting yaitu, menekan bagian kecil pada ducting kearah miring, karena bila lurus secara horizontal, menandakan ducting tertutup. Ducting berfungsi untuk menghisap hasil pembakara yang terjadi pada AAS, dan mengeluarkannya melalui cerobong asap yang terhubung dengan ducting.
c. Kompresor
Kompresor merupakan alat yang terpisah dengan main unit, karena alat iniberfungsi untuk mensuplai kebutuhan udara yang akan digunakan oleh AAS, pada waktu pembakaran atom. Kompresor memiliki 3 tombol pengatur tekanan, dimana pada bagian yang kotak hitam merupakan tombol ON-OFF, spedo pada bagian tengah merupakan besar kecilnya udara yang akan dikeluarkan, atau berfungsi sebagai pengatur tekanan, sedangkan tombol yang kanan merupakantombol pengaturan untuk mengatur banyak/sedikitnya udara yang akan disemprotkan ke burner.
Bagian pada belakang kompresor digunakan sebagai tempat penyimpanan udara setelah usai penggunaan AAS. Alat ini berfungsi untuk menyaring udara dari luar, agar bersih.posisi ke kanan, merupakan posisi terbuka, dan posisi ke kiri meerupakan posisi tertutup. Uap air yang dikeluarkan, akan memercik kencang dan dapat mengakibatkan lantai sekitar menjadi basah, oleh karena itu sebaiknya pada saat menekan ke kanan bagian ini, sebaiknya ditampung dengan lap, agar lantai tidak menjadi basah., dan uap air akan terserap ke lap.
d. Burner
Burner merupakan bagian paling terpenting di dalam main unit, karena burner berfungsi sebagai tempat pancampuran gas asetilen, dan aquabides, agar tercampur merata, dan dapat terbakar pada pemantik api secara baik dan merata. Lobang yang berada pada burner, merupakan lobang pemantik api, dimana pada lobang inilah awal dari proses pengatomisasian nyala api.
Perawatan burner yaitu setelah selesai pengukuran dilakukan, selang aspirator dimasukkan ke dalam botol yang berisi aquabides selama ±15 menit, hal ini merupakan proses pencucian pada aspirator dan burner setelah selesai pemakaian. Selang aspirator digunakan untuk menghisap atau menyedot larutan sampel dan standar yang akan diuji. Selang aspirator berada pada bagian selang yang berwarna oranye di bagian kanan burner. Sedangkan selang yang kiri, merupakan selang untuk mengalirkan gas asetilen. Logam yang akan diuji merupakan logam yang berupa larutan dan harus dilarutkan terlebih dahulu dengan menggunakan larutan asam nitrat pekat. Logam yang berada di dalam larutan, akan mengalami eksitasi dari energi rendah ke energi tinggi. Nilai eksitasi dari setiap logam memiliki nilai yang berbeda-beda. Warna api yang dihasilkan berbeda-beda bergantung pada tingkat konsentrasi logam yang diukur. Bila warna api merah, maka menandakan bahwa terlalu banyaknya gas. Dan warna api paling biru, merupakan warna api yang paling baik, dan paling panas, dengan konsentrasi
f. Buangan Pada AAS
Buangan pada AAS disimpan di dalam drigen dan diletakkan terpisah pada AAS. Buangan dihubungkan dengan selang buangan yang dibuat melingkar sedemikian rupa, agar sisa buangan sebelumnya tidak naik lagi ke atas, karena bila hal ini terjadi dapat mematikan proses pengatomisasian nyala api pada saat pengukuran sampel, sehingga kurva yang dihasilkan akan terlihat buruk.
Tempat wadah buangan (drigen) ditempatkan pada papan yang juga dilengkapi dengan lampu indicator. Bila lampu indicator menyala, menandakan bahwa alat AAS atau api pada proses pengatomisasian menyala, dan sedang berlangsungnya proses pengatomisasian nyala api. Selain itu, papan tersebut juga berfungsi agar tempat atau wadah buangan tidak tersenggol kaki. Bila buangan sudah penuh, isi di dalam wadah jangan dibuat kosong, tetapi disisakan sedikit, agar tidak kering.

Keuntungan metode AAS
Keuntungan metode AAS dibandingkan dengan spektrofotometer biasa yaitu spesifik, batas deteksi yang rendah dari larutan yang sama bisa mengukur unsur-unsur yang berlainan, pengukurannya langsung terhadap contoh, output dapat langsung dibaca, cukup ekonomis, dapat diaplikasikan pada banyak jenis unsur, batas kadar penentuan luas (dari ppm sampai %). Sedangkan kelemahannya yaitu pengaruh kimia dimana AAS tidak mampu menguraikan zat menjadi atom misalnya pengaruh fosfat terhadap Ca, pengaruh ionisasi yaitu bila atom tereksitasi (tidak hanya disosiasi) sehingga menimbulkan emisi pada panjang gelombang yang sama, serta pengaruh matriks misalnya pelarut.

SISTEM ATOMISASI
1. SISTEM ATOMISASI NYALA
Setiap alat spektrometri atom akan mencakup dua komponen utama sistem introduksi sampel dan sumber (source) atomisasi. Untuk kebanyakan instrumen sumber atomisasi ini adalah nyala dan sampel di introduksikan dalarn bentuk larutan. Sampel masuk ke nyala dalam bentuk aerosol. Aerosol biasanya dihasilkan oleh Nebulizer (pengabut) yang dihubungkan ke nyala oleh ruang penyemprot (chamber spray).
Ada banyak variasi nyala yang telah diapakai bertahun-tahun untuk spektrometri atom. Namun demikian. yang saat ini menonjol dan dipakai secara luas untuk pengukuran analitik adalah udara-asetilen dan nitrous oksida- asetilen.Dengan kedua jenis nyala ini, kondisi analisis yang sesuai untuk kebanyakan ana!it (unsur yang dianalisis) dapat ditentukan dengan menggunakan metode-metode emisi, absorbsi dan juga fluoresensi.
Biasanya menjadi pilihan untuk analisis menggunakan AAS,. temperarur nyala-nya yang lebih rendah mendorong terbentuknya atom netral dan dengan nyala yang kaya bahan bakar pembentukan oksida dari banyak unsur dapat diminimalkan. Nitrous oksida-asetilen .Dianjurkan dipakai untuk penentuan unsur-unsur yang mudah membentuk oksida dan sulit terurai. Hal ini disebabkan temperatur nyala yang dihasilkan relative tinggi. Unsur-unsur tersebut adalah: Al, B, Mo, Si, So, Ti, V danW.
Proses atomisasi adalah proses pengubahan sample dalam bentuk larutan menjadi spesies atom dalam nyala. Proses atomisasi ini akan berpengaruh terhadap hubungan antara konsentrasi atom analit dalam larutan dan sinyal yang diperoleh pada detektor dan dengan demikian sangat berpengaruh terhadap sensitivitas analisis. Langkah-langkah proses atomisasi melibatkan hal-hal kunci sebagaimana diberikan pada Gambar 3. Secara ideal fungsi dari sistem atomisasi (source) adalah:
a. Mengubah sembarang jenis sampel menjadi uap atom fasa-gas dengan sedikit perlakuan atau tanpa perIakuan awal.
b. Me!akukan seperti pada point 1) untuk semua elemen (unsur) dalam sampel pada semua level konsentrasi.
c. Agar diperoleh kondisi operasi yang identik untuk setiap elemen dan sampel.
d. Mendapatkan sinyal analitik sebagai fungsi sederhana dari konsentrasi tiap¬-tiap elemen. yakni agar gangguan(interfererisi) dan penganih matriks (media) sampel menjadi minimal.
e. Memberikan analisis yang teliti (precise) dan tepat (accurate).
f. Mendapatkan harga beli, perawatan dan pengoperasian yang murah.
g. Memudahkan operasi.




2. SISTEM ATOMISASIDENGAN ELEKTROTHERMAL (TUNGKU)
Sistem nyala api ini lebih dikenal dengan nama GFAAS. GFAAS dapat mengatasi kelemahan dari sistem nyala seperti, sensitivitas, jumlah sampel dan penyiapan sampel. Ada tiga tahap atomisasi dengan tungku yaitu:
a. Tahap pengeringan atau penguapan larutan
b. Tahap pengabuan atau penghilangan senyawa-senyawa organik dan
c. Tahap atomisas
Unsur-unsur yang dapat dianalsis dengan menggunakan GFAAS adalah sama dengan unsur-unsur yang dapat dianalisis dengan sistem nyala. Beberapa unsur yang sama sekali tidak dapat dianalisis dengan GFAAS adalah tungsten, Hf, Nd, Ho, La, Lu, Os, Br, Re, Sc, Ta, U, W, Y dan Zr, hal ini disebabkan karena unsur tersebut dapat bereaksi dengan graphit.
Jangan menggunakan media klorida, lebih baik gunakan nitrat 2. Sulfat dan fosfat bagus untuk pelarut sampel, biasanya setelah sampel ditempatkan dalam tungku. Gunakan cara adisi sehingga bila sampel ada interferensi dapat terjadi pada sampel dan standard.
METODE ANALISIS
Ada tiga teknik yang biasa dipakai dalam analisis secara spektrometri. Ketiga teknik tersebut adalah :
(1) Metoda Standar Tunggal
Metoda sangat praktis karena hanya menggunakan satu larutan standar yang telah diketahui konsentrasinya (Cstd). Selanjutnya absorbsi larutan standar (Asta) dan absorbsi larutan sampel (Asmp) diukur dengan Spektrofotometri.
(2) Metode Kurva Kalibrasi

Dalam metode ini dibuat suatu seri larutan standar dengan berbagai konsentrasi dan absorbansi dari larutan tersebut diukur dengan AAS Langkah selanjutnya adalah membuat grafik antara konsentrasi (C) dengan Absorbansi (A) yang akan merupakan garis lurus melewati titik nol. dengan slope = b atau slope = a.b. Konsentrasi larutan sampel dapat dicari setelah absorbansi larutan sampel diukur dan diintrapolasi ke dalam kurva kalibrasi atau dimasukkan ke dalam persamaan garis lurus yang diperoleh dengan menggunakan program regresi linear pada kurva kalibrasi.


(3) Metoda Adisi Standar

Metoda ini dipakai secara luas karena mampu meminimalkan kesalahan yangdisebabkan oleh perbedaan kondisi lingkungan (matriks) sampel dan standar.Dalam metoda ini dua atau lebih sejumlah volume tertentu dari sampel dipindahkan ke dalam labu takar. Satu larutan diencerkan sampat volume tertentu kemudian diukur absorbansinya tanpa ditambah dengan zat standar, sedangkan larutan yang lain sebelum diukur absorbansinya ditambah terlebih dulu dengan sejumlah tertentu tarutan standar dan diencerkan seperti pada larutan yang pertama. Menurut hukum Beer akan berlaku hal-hal berikut :
Ax = k.Cx AT = k(Cs + Cx)
Dimana.,
Cx = konsentrasi zat sampel
Cs = konsentrasi zat standar yang ditambahkan ke larutan sampe
Ax = Absorbansi zat sampel (tanpa penambahan zat standar)
Ar = Absorbansi zat sampel + zat standar
Jika kedua persarnaan diatas digabung akan diperoleh:
Cx = Cs x {Ax/(AT - Ax)}
Konsentrasi zat dalam sampel (Cx) dapat dihitung dengan mengukur Ax dan AT dengan spektrofotometer. Jika dibuat suatu seri penambahan zat standar dapat pula dibuat suatu grafik antara AT lawan Cs, garis lurus yang diperoleh diekstrapolasi ke AT = 0, sehingga diperoleh.
Cx = Cs x {Ax/(O - Ax)} ; Cx = Cs x (Ax /-Ax)
Cx = Cs x ( -1) atau Cx = - Cs

GANGGUAN DALAM ANALISIS DENGAN SSA
Ada tiga gangguan utama dalam SSA :
(1) Gangguan ionisasi
(2) Gangguan akibat pembentukan senyawa refractory (tahan panas)
(3) Gangguan fisik alat
Gangguan lonisasi: Gangguan ini biasa terjadi pada unsur alkali dan alkali tanah dan beberapa unsur yang lain karena unsur-unsur tersebut mudah terionisasi dalam nyala. Dalam analisis dengan FES dan AAS yang diukur adalah emisi dan serapan atom yang tidak terionisasi. Oleh sebab itu dengan adanya atom-atom yang terionisasi dalam nyala akan mengakibatkan sinyal yang ditangkap detek'tor menjadi berkurang. Namun demikian gangguan ini bukan gangguan yang sifatnya serius, karena hanya sensitivitas dan linearitasnya saja yang terganggu. Gangguan ini dapat diatasi dengan menambahkan unsur-¬unsur yaug mudah terionisasi ke clalam sampel sehingga akan menahan proses ionisasi dari unsur yang dianalisis.
Pembentukan Senyawa Refraktori: Gangguan ini diakibatkan oleh reaksi antara analit dengan senyawa kimia, biasanya anion yang ada dalam larutan sampel sehingga terbentuk senyawa yang tahan panas (refractory). Sebagai contoh, pospat akan bereaksi dengan kalsium dalam nyala menghasilkan kalsium piropospat (CaP2O7). Hal ini menyebabkan absorpsi ataupun emisi atom kalsium dalam nyala menjadi berkurang. Gangguan ini dapat diatasi dengan menambahkan stronsium klorida atau lantanum nitrat ke dalam tarutan. Kedua logam ini lebih mudah bereaksi dengan pospat dihanding kalsium sehingga reaksi antara kalsium dengan pospat dapat dicegah atau diminimalkan. Gangguan ini juga dapat dihindari dengan menambahkan EDTA berlebihan. EDTA akan membentuk kompleks chelate dengan kalsium, sehingga pembentukan senyawa refraktori dengan pospat dapat dihindarkan.
Selanjutnya kompleks Ca-EDTA akan terdissosiasi dalam nyala menjadi atom netral Ca yang menyerap sinar. Gangguan yang lebih serius terjadi apabi!a unsur-unsur seperti: AI, Ti, Mo,V dan lain-lain bereaksi dengan O dan OH dalam nyala menghasilkan logam oksida dan hidroksida yang tahan panas. Gangguan ini hanya dapat diatasi dengan menaikkan temperatur nyala., sehingga nyala yang urnum digunakan dalam kasus semacam ini adalah nitrous oksida-asetilen.
Gangguan Fisik Alat : yang dianggap sebagai gangguan fisik adalah semua parameter yang dapat mempengaruhi kecepatan sampel sampai ke nyala dan sempurnanya atomisasi. Parameter-parameter tersebut adalah: kecepatan alir gas, berubahnya viskositas sampel akibat temperatur atau solven, kandungan padatan yang tinggi, perubahan temperatur nyala dll. Gangguan ini biasanya dikompensasi dengan lebih sering membuat Kalibrasi (standarisasi).

PROSEDUR KERJA

2.1. Alat dan Bahan
2.1.1 Alat yang digunakan :
a. Sumber sinar
b. Atomizer
c. Detector
d. Labu ukur
e. Pipet tetes
f. Pipet volume
g. Beaker glass
h. Batang pengaduk

2.1.2 Bahan yang digunakan :
a. Larutan logam Pb 1 ppm
b. Larutan logam Pb 2 ppm
c. Larutan logam Pb 2 ppm
d. Larutan unknow

Sebagai gas pembakar dan oksidan yang digunakan adalah :
1. AcetyleneUdara
2. Acetylene N2O
3. Acetylene Oksigen
4. H2 Udara
5. H2 N2O
6. H2 Oksigen
7. Propana Udara
2.2. Prosedur Kerja
Sebelum penekanan power switch :
a. Display switch ke check
b. Scan speed switch ke manual
c. Ekspansi knop skala 1,00 (x1)
d. A.A Zero skala 10,00
e. Mode ke FE
f. Lamp current ke skala 0
g. FE Zero ke arah jarum jam (habis)

Sebelum pengaliran gas :
a. Pilih jenis gas yang akan digunakan
b. Buang air pada tangki air, bila diatas level yang ditentukan (perhatikan volume tangki sedikit diatas garis strip)
c. Putar presurre control berlawanan arah sampai %
d. Flame monitor ke on-of
e. Level monitor ke udara
f. Atur flow gas yang dipakai : udara.

Menghidupkan lampu katoda :
a. Tekan power switch ke ON
b. Pasang lampu dan sesuaikan ke tempatnya
c. Longgarkan skrupnya dan atur sehinnga posisi lampu lurus ke poros opticalnya.
d. Sesuaikan lampu current menurut yang dikehendaki
e. Setelah pengaturan panjang gelombang dan slit width tepatkan pada posisi lampu sehingga skala meteran maximum.
f. Lampu dapat digunakan untuk analisa setelah pemanasan 10 menit mengaturan slit width dan panjang gelombang :
pengaturan slit width dan panjang gelombang :
a. Atur response 1
b. Atur slit width menurut yang dikehendaki
c. Atur A.a Zero antara 3, 5-4-3
d. Tepatkan dengan FE Zero kontrol, sehingga skala meteran pembacaan dibawah 100 (=80) lampu z monitor seperti padam.
e. Putar perlahan-lahan panjang gelombang sehingga diperoleh harga maximum pada skala pembacaan
Ignisi :
a. Perhatikan kembali skala-skala pengaliran gas, sesuaikan dengan tabel.
b. Putar flow kontrol sesuai arah jam (habis) dan akan terlihat knop warna merah.
c. Tekan ignisi sehingga terbentuk nyala.
d. .Atur nyala sehingga tingginya sesuai dengan memutar pengatur knop udara

Pengukuran :
a. Putar mode switch dari FE ke AA
b. Sambil mengaspirasikan solvent (air) display ke check tepatkan dengan AA Zero sehinnga skala meteran menunjukkan antara 0-100 (=75). Maka zero monitor menjadi padam.
c. Putar display ke average 1, jika pada saat itu skala meteran diluar normal (-) tekan zero set.
d. Sambil aspirasi air, check sinar zero monitor jika tidak terang maka tekan zero set, secara continiu aspirasi solvent sehingga zero set menjadi padam. Jika sinar zero monitor terang atur dengan AA zero dengan aspirasi air sehingga air menjadi padam dan tekan zero set.
e. Aspirasi sampel dan tekan ³average start´.
f. Sesudah average start padam, stop aspirasi dan tekan ³zero set´ baca skala pembacaan absorbansi.

Pemadaman Nyala :
a. .Aspirasi air -10 untuk membersihkan burner
b. Putar OFF preassure monitor dan flame monitor
c. tutup klran C2H2dan udara OFF
d. Putar preassure control sesuai lawan arah jarum jam(3/4)habis)
e. Tekan extinguish sampai skala meteran 0 stop nyala
f. Atur
- Expansi ke 1
- Display check ke check 1
- Mode switch ke FE 2
g. Putar lamp current ke 0 untuk memadamkan lampu katoda
h. Tekan power ke OFF
Pembuatan larutan standart logam :
Buat larutan standart logam dengan konsentrasi-konsentrasi yang sesuai dengan absorbansi AC larutan standart yang diketahui konsentrasinya biasanya dibuat kurva kalibrasi suatu grafik antara A vs C.
Pembuatan larutan cuplikan :
Buat larutan cuplikan menurut pelarutan bahan cuplikan yang sesuai.
Pengukuran cuplikan dilakukan menurut prosedur diatas.Dan konsentrasi larutan
cuplikan dapat ditentukan dengan bantuan grafik standar.

BAB III
GAMBAR RANGKAIAN
1.1. Gambar Peralatan
Beaker glass dan erlenmeyer








3.2. Gambar Rangkaian
3. 3. Keterangan Gambar Rangkaian
a. Lampu Katoda
Lampu katoda merupakan sumber cahaya pada AAS. Lampu katoda memiliki masa pakai atau umur pemakaian selama 1000 jam. Lampu katoda pada setiap unsur yang akan diuji berbeda-beda tergantung unsur yang akan diuji, seperti lampu katoda Cu, hanya bisa digunakan untuk pengukuran unsur Cu.
a. Tabung Gas
Tabung gas pada AAS yang digunakan merupakan tabung gas yang berisi gas asetilen. Gas asetilen pada AAS memiliki kisaran suhu ± 20000K, dan ada juga tabung gas yang berisi gas N2O yang lebih panas dari gas asetilen, dengan kisaran suhu ± 30000K.
b. Ducating
Ducting merupakan bagian cerobong asap untuk menyedot asap atau sisa pembakaran pada AAS, yang langsung dihubungkan pada cerobong asap bagian luar pada atap bangunan, agar asap yang dihasilkan oleh AAS, tidak berbahaya bagi lingkungan sekitar. Asap yang dihasilkan dari pembakaran pada AAS, diolah sedemikian rupa di dalam ducting, agar polusi yang dihasilkan tidak berbahaya.
c. Kompresor
Kompresor merupakan alat yang terpisah dengan main unit, karena alat iniberfungsi untuk mensuplai kebutuhan udara yang akan digunakan oleh AAS, pada waktu pembakaran atom.
d. Burner
Burner merupakan bagian paling terpenting di dalam main unit, karena burner berfungsi sebagai tempat pancampuran gas asetilen, dan aquabides, agar tercampur merata, dan dapat terbakar pada pemantik api secara baik dan merata. Lobang yang berada pada burner, merupakan lobang pemantik api, dimana pada lobang inilah awal dari proses pengatomisasian nyala api.
e. Buangan pada AAS
Buangan pada AAS disimpan di dalam drigen dan diletakkan terpisah pada AAS. Buangan dihubungkan dengan selang buangan yang dibuat melingkar sedemikian rupa, agar sisa buangan sebelumnya tidak naik lagi ke atas, karena bila hal ini terjadi dapat mematikan proses pengatomisasian nyala api pada saat pengukuran sampel, sehingga kurva yang dihasilkan akan terlihat buruk.
f. Dioda Laser
Spektrokopis penyerapan atom juga dapat dilakukan oleh laser, diode laser terytama karena sifat baik mereka untuk spektrometri penyerapan sinar laser. Teknik ini kemudian juga disebut sebagao diode laser spektrometri penyerapan atom (DLAAS atau DLAS), atau, karena panjang gelombang modulasi yang sering digunakan, spertro metri penyerapan panjang gelombang modulasi.

Infra Merah (Infra Red)

Spektro infra red dapat digunakan untuk mempelajari sifat-sifat bahan,dimana struktur zat yang diuji dapat diamati pada spektrofgram panjang gelombang vs transmittansi yang sangat spesifik dan merupakan sidik jari suatu molekul. Spektrogram zat yang diuji dibandingkan dengan spektrogram dari bahan yang sudah diketahui spktranya.

Spektrofotometri Infra Merah
Spektrofotometri Infra Red atau Infra Merah meruakan suatu metode yang mengamati interaksi molekul dengan radiasi elektromagnetik yang berada pada daerah panjang gelombang 0,75 – 1.000 µm atau pada Bilangan Gelombang 13.000 – 10 cm-1. Radiasi elektromagnetik dikemukakan pertama kali oleh James Clark Maxwell, yang menyatakan bahwa cahaya secara fisis merupakan gelombang elektromagnetik, artinya mempunyai vektor listrik dan vektor magnetik yang keduanya saling tegak lurus dengan arah rambatan.
Gambaran berkas radiasi elektromagnetik diperlihatkan pada Gambar 1 berikut :

Gambar 1: berkas radiasi elektromagnetik
Tabel 1 : Pembagian Gelombang Elektromagnetik

Gambar 2 : Pembagian Gelombang Elektromagnetik
Saat ini telah dikenal berbagai macam gelombang elektromagnetik dengan rentang panjang gelombang tertentu. Spektrum elektromagnetik merupakan kumpulan spektrum dari berbagai panjang gelombang. Berdasarkan pembagian daerah panjang gelombang pada Tabel 1 dan Gambar 2, sinar infra merah dibagi atas tiga daerah, yaitu:
Daerah Infra Merah dekat.
Daerah Infra Merah pertengahan.
Daerah infra merah jauh..
Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 – 50 µm atau pada bilangan gelombang 4.000 – 200 cm-1. Satuan yang sering digunakan dalam spektrofotometri infra merah adalah Bilangan Gelombang ( ) atau disebut juga sebagai Kaiser.

Spektrofotometer Inframerah Transformasi Fourier
Pada dasarnya Spektrofotometer Fourier Transform Infra Red (disingkat FTIR) adalah sama dengan Spektrofotometer Infra Red disperse, yang membedakannya adalah pengembangan pada sistim optiknya sebelum berkas sinar infra merah melewati contoh. Dasar pemikiran dari Spektrofotometer Fourier Transform Infra Red adalah dari persamaan gelombang yang dirumuskan oleh Jean Baptiste Joseph Fourier (1768-1830) seorang ahli matematika dari Perancis.
Dari deret Fourier tersebut intensitas gelombang dapat digambarkan sebagai daerah waktu atau daerah frekwensi. Perubahan gambaran intensitas gelobang radiasi elektromagnetik dari daerah waktu ke daerah frekwensi atau sebaliknya disebut Transformasi Fourier (Fourier Transform).
Selanjutnya pada sistim optik peralatan instrumen Fourier Transform Infra Red dipakai dasar daerah waktu yang non dispersif. Sebagai contoh aplikasi pemakaian gelombang radiasi elektromagnetik yang berdasarkan daerah waktu adalah interferometer yang dikemukakan oleh Albert Abraham Michelson (Jerman, 1831).

Cara Kerja Alat Spektrofotometer Fourier Transform Infra Red
Sistim optik Spektrofotometer Fourier Transform Infra Red seperti pada gambar disamping ini dilengkapi dengan cermin yang bergerak tegak lurus dan cermin yang diam. Dengan demikian radiasi infra merah akan menimbulkan perbedaan jarak yang ditempuh menuju cermin yang bergerak ( M ) dan jarak cermin yang diam ( F ). Perbedaan jarak tempuh radiasi tersebut adalah 2 yang selanjutnya disebut sebagai retardasi ( δ ). Hubungan antara intensitas radiasi IR yang diterima detektor terhadap retardasi disebut sebagai interferogram. Sedangkan sistim optik dari Spektrofotometer Infra Red yang didasarkan atas bekerjanya interferometer disebut sebagai sistim optik Fourier Transform Infra Red.
Pada sistim optik Fourier Transform Infra Red digunakan radiasi LASER (Light Amplification by Stimulated Emmission of Radiation) yang berfungsi sebagai radiasi yang diinterferensikan dengan radiasi infra merah agar sinyal radiasi infra merah yang diterima oleh detektor secara utuh dan lebih baik.
Detektor yang digunakan dalam Spektrofotometer Fourier Transform Infra Red adalah Tetra Glycerine Sulphate (disingkat TGS) atau Mercury Cadmium Telluride (disingkat MCT). Detektor MCT lebih banyak digunakan karena memiliki beberapa kelebihan dibandingkan detektor TGS, yaitu memberikan respon yang lebih baik pada frekwensi modulasi tinggi, lebih sensitif, lebih cepat, tidak dipengaruhi oleh temperatur, sangat selektif terhadap energi vibrasi yang diterima dari radiasi infra merah.

Cara Kerja Alat Spektrofotometer Fourier Transform Infra Red
Sistim optik Spektrofotometer Fourier Transform Infra Red seperti pada gambar disamping ini dilengkapi dengan cermin yang bergerak tegak lurus dan cermin yang diam. Dengan demikian radiasi infra merah akan menimbulkan perbedaan jarak yang ditempuh menuju cermin yang bergerak ( M ) dan jarak cermin yang diam ( F ). Perbedaan jarak tempuh radiasi tersebut adalah 2 yang selanjutnya disebut sebagai retardasi ( δ ). Hubungan antara intensitas radiasi IR yang diterima detektor terhadap retardasi disebut sebagai interferogram. Sedangkan sistim optik dari Spektrofotometer Infra Red yang didasarkan atas bekerjanya interferometer disebut sebagai sistim optik Fourier Transform Infra Red.
Pada sistim optik Fourier Transform Infra Red digunakan radiasi LASER (Light Amplification by Stimulated Emmission of Radiation) yang berfungsi sebagai radiasi yang diinterferensikan dengan radiasi infra merah agar sinyal radiasi infra merah yang diterima oleh detektor secara utuh dan lebih baik.
Detektor yang digunakan dalam Spektrofotometer Fourier Transform Infra Red adalah Tetra Glycerine Sulphate (disingkat TGS) atau Mercury Cadmium Telluride (disingkat MCT). Detektor MCT lebih banyak digunakan karena memiliki beberapa kelebihan dibandingkan detektor TGS, yaitu memberikan respon yang lebih baik pada frekwensi modulasi tinggi, lebih sensitif, lebih cepat, tidak dipengaruhi oleh temperatur, sangat selektif terhadap energi vibrasi yang diterima dari radiasi infra merah.

Interaksi Sinar Infra Merah Dengan Molekul

Bila ikatan bergetar, maka energi vibrasi secara terus menerus dan secara periodik berubah dari energi kinetik ke energi potensial dan sebaiknya. Jumlah energi total adalah sebanding dengan frekwensi vibrasi dan tetapan gaya ( k ) dari pegas dan massa ( m1 dan m2 ) dari dua atom yang terikat. Energi yang dimiliki oleh sinar infra merah hanya cukup kuat untuk mengadakan perubahan vibrasi.
Panjang gelombang atau bilangan gelombang dan kecepatan cahaya dihubungkan dengan frekwensi melalui bersamaan berikut : Energi yang timbul juga berbanding lurus dengan frekwesi dan digambarkan dengan persamaan Max Plank :
E = Energi, Joule

h = Tetapan Plank ; 6,6262 x 10-34 J.s

c = Kecepatan cahaya ; 3,0 x 1010 cm/detik

n = indeks bias (dalam keadaan vakum harga n = 1)

λ = panjang gelombang ; cm

f = frekwensi ; Hertz

Dalam spektroskopi infra merah panjang gelombang dan bilangan gelombang adalah nilai yang digunakan untuk menunjukkan posisi dalam spektrum serapan. Panjang gelombang biasanya diukur dalam mikron atau mikro meter ( オm ).


Sedangkan bilangan gelombang adalah frekwensi dibagi dengan kecepatan
cahaya, yaitu kebalikan dari panjang gelombang dalam satuan cm-1. Persamaan dari hubungan kedua hal tersebut diatas adalah :
c = kecepatan cahaya : 3,0 x 1010 cm/detik

k = tetapan gaya atau kuat ikat, dyne/cm

オ = massa tereduksi

m = massa atom, gram
Metode spektroskopi inframerah merupakan suatu metode yang meliputi teknik serapan (absorption), teknik emisi (emission), teknik fluoresensi (fluorescence). Komponen medan listrik yang banyak berperan dalam spektroskopi umumnya hanya komponen medan listrik seperti dalam fenomena transmisi, pemantulan, pembiasan, dan penyerapan. Penemuan infra merah ditemukan pertama kali oleh William Herschel pada tahun 1800. Penelitian selanjutnya diteruskan oleh Young, Beer, Lambert dan Julius melakukan berbagai penelitian dengan menggunakan spektroskopi inframerah. Pada tahun 1892 Julius menemukan dan membuktikan adanya hubungan antara struktur molekul dengan inframerah dengan ditemukannya gugus metil dalam suatu molekul akan memberikan serapan karakteristik yang tidak dipengaruhi oleh susunan molekulnya. Penyerapan gelombang elektromagnetik dapat menyebabkan terjadinya eksitasi tingkat-tingkat energi dalam molekul. Dapat berupa eksitasi elektronik, vibrasi, atau rotasi. Rumus yang digunakan untuk menghitung besarnya energi yang diserap oleh ikatan pada gugus fungsi adalah:
• E = h.ν = h.C /λ = h.C / v
• E = energi yang diserap
• h = tetapan Planck = 6,626 x 10-34 Joule.det
• v = frekuensi
• C = kecepatan cahaya = 2,998 x 108 m/det
• λ = panjang gelombang
• ν = bilangan gelombang
Dasar Spektroskopi Infra Merah dikemukakan oleh Hooke dan didasarkan atas senyawa yang terdiri atas dua atom atau diatom yang digambarkan dengan dua buah bola yang saling terikat oleh pegas seperti tampak pada gambar disamping ini. Jika pegas direntangkan atau ditekan pada jarak keseimbangan tersebut maka energi potensial dari sistim tersebut akan naik.
Setiap senyawa pada keadaan tertentu telah mempunyai tiga macam gerak, yaitu :
1. Gerak Translasi, yaitu perpindahan dari satu titik ke titik lain.
2. Gerak Rotasi, yaitu berputar pada porosnya, dan
3. Gerak Vibrasi, yaitu bergetar pada tempatnya..
Metode Spektroskopi inframerah ini dapat digunakan untuk mengidentifikasi suatu senyawa yang belum diketahui,karena spektrum yang dihasilkan spesifik untuk senyawa tersebut. Metode ini banyak digunakan karena:
• a. Cepat dan relatif murah
• b. Dapat digunakan untuk mengidentifikasi gugus fungsional dalam molekul
• c. Spektrum inframerah yang dihasilkan oleh suatu senyawa adalah khas dan oleh karena itu dapat menyajikan sebuah fingerprint (sidik jari) untuk senyawa tersebut.

Tabel . Serapan Khas Beberapa Gugus fungsi



Jenis Vibrasi Molekul
Ada dua jenis vibrasi yaitu:
• 1. Vibrasi ulur (Stretching Vibration), yaitu vibrasi yang mengakibatkan perubahan panjang ikatan suatu ikatan
• 2. Vibrasi tekuk (Bending Vibrations), yaitu vibrasi yang mengakibatkan perubahan sudut ikatan antara dua ikatan
Vibrasi tekuk itu sendiri dibagi lagi menjadi empat:
• 1. Scissoring
• 2. Rocking
• 3. Wagging
• 4. Twisting

Perubahan Energi Vibrasi
Atom-atom di dalam molekul tidak dalam keadaan diam, tetapi biasanya terjadi peristiwa vibrasi. Hal ini bergantung pada atom-atom dan kekuatan ikatan yang menghubungkannya. Vibrasi molekul sangat khas untuk suatu molekul tertentu dan biasanya disebut vibrasi finger print. Vibrasi molekul dapat digolongkan atas dua golongan besar, yaitu :
1. Vibrasi Regangan (Streching)
2. Vibrasi Bengkokan (Bending)

Vibrasi Regangan (Streching)
Dalam vibrasi ini atom bergerak terus sepanjang ikatan yang menghubungkannya sehingga akan terjadi perubahan jarak antara keduanya, walaupun sudut ikatan tidak berubah. Vibrasi regangan ada dua macam, yaitu:
1. Regangan Simetri, unit struktur bergerak bersamaan dan searah dalam satu bidang datar.
2. Regangan Asimetri, unit struktur bergerak bersamaan dan tidak searah tetapi masih dalam satu bidang datar.

Vibrasi Bengkokan (Bending)
Jika sistim tiga atom merupakan bagian dari sebuah molekul yang lebih besar, maka dapat menimbulkan vibrasi bengkokan atau vibrasi deformasi yang mempengaruhi osilasi atom atau molekul secara keseluruhan. Vibrasi bengkokan ini terbagi menjadi empat jenis, yaitu :
1. Vibrasi Goyangan (Rocking), unit struktur bergerak mengayun asimetri tetapi masih dalam bidang datar.
2. Vibrasi Guntingan (Scissoring), unit struktur bergerak mengayun simetri dan masih dalam bidang datar.
3. Vibrasi Kibasan (Wagging), unit struktur bergerak mengibas keluar dari bidang datar.
4. Vibrasi Pelintiran (Twisting), unit struktur berputar mengelilingi ikatan yang menghubungkan dengan molekul induk dan berada di dalam bidang datar.

Penggunaan dan Aplikasi
Spektroskopi inframerah biasanya digunakan untuk penelitian dan digunakan dalam industri yang sederhana dengan teknik yang sederhana dan untuk mengontrol kualitas. Alat spektroskopi inframerah cukup kecil dan mudah dibawa kemana-mana dan kapanpun dapat digunakan. Dengan meningkatnya teknologi komputer memberikan hasil yang lebih baik. Spektroskopi inframerah mempunyai ketepatan yang tinggi pada aplikasi kimia organik dan anorganik. Spektroskopi inframerah juga sukses kegunaannya dalam semikonduktor mikroelektronik: untuk contoh, spektroskopi inframerah dapat digunakan untu semikonduktor seperti silikon, gallium arsenida, gallium nitrida, zinc selenida, silikon amorp, silikon nitrida, dan sebagainya.


Efek isotop
Isotop yang berbeda memberikan bilangan gelombang yang berbeda pada spektroskopi inframerah. Seperti contoh frekuensi regangan O-O memberikan nilai 832 dan 788 cm -1 untuk ν(16O-16O) dan ν(18O-18O) melalui hubungan O-O sebagai sebuah spring, bilangan gelombang,ν dapat dihitung:

dimana k nilai konstan untuk ikatan, dan μ massa tereduksi untuk sistem A-B

(mi massa dari atom i).
Massa reduksi untuk 16O-16O dan 18O-18O dapat diperkirakan antara 8 dan 9. Sehingga


Daerah Identifikasi
Vibrasi yang digunakan untuk identifikasi adalah vibrasi bengkokan, khususnya goyangan (rocking), yaitu yang berada di daerah bilangan gelombang 2000 ・400 cm-1. Karena di daerah antara 4000 ・2000 cm-1 merupakan daerah yang khusus yang berguna untuk identifkasi gugus fungsional. Daerah ini menunjukkan absorbsi yang disebabkan oleh vibrasi regangan. Sedangkan daerah antara 2000 ・400 cm-1 seringkali sangat rumit, karena vibrasi regangan maupun bengkokan mengakibatkan absorbsi pada daerah tersebut.
Dalam daerah 2000 ・400 cm-1 tiap senyawa organik mempunyai absorbsi yang unik, sehingga daerah tersebut sering juga disebut sebagai daerah sidik jari (fingerprint region). Meskipun pada daerah 4000 ・2000 cm-1 menunjukkan absorbsi yang sama, pada daerah 2000 ・400 cm-1 juga harus menunjukkan pola yang sama sehingga dapat disimpulkan bahwa dua senyawa adalah sama.

Penafsiran Spektrum Inframerah
Untuk penafsiran spektrum inframerah tidak ada aturan kaku, namun syarat-syarat tertentu yang harus dipenuhi sebagai upaya untuk menafsirkan suatu
spektrum adalah
Spektrum harus terselesaikan dan intensitas cukup memadai
Spektrum diperoleh dari senyawa murni
Spektrofotometer harus dikalibrasi sehingga pita yang teramati sesuai dengan frekuensi atau panjang gelombangnya. Kalibrasi dapat dilakukan dengan menggunakan standar yang dapat diandalkan, seperti polistirena film.
Metode persiapan sampel harus ditentukan. Jika dalam bentuk larutan, maka konsentrasi larutan dan ketebalan sel harus ditunjukkan.
Penyerapan sinar uv-vis dibatasi pd sejumlah gugus fungsional/gugus kromofor (gugus dengan ikatan tidak jenuh) yang mengandung electron valensi dengan tingkat eksitasi yang rendah. Dengan melibatkan 3 jenis electron yaitu : sigma, phi dan non bonding electron. Kromofor-kromofor organic seperti karbonil, alken, azo, nitrat dan karboksil mampu menyerap sinar ultraviolet dan sinar tampak. Panjang gelombang maksimalnya dapat berubah sesuai dengan pelarut yang digunakan. Auksokrom adalah gugus fungsional yang mempunyai elekron bebas, seperti hidroksil, metoksi dan amina. Terikatnya gugus auksokrom pada gugus kromofor akan mengakibatkan pergeseran pita absorpsi menuju ke panjang gelombang yang lebih besar (bathokromik) yang disertai dengan peningkatan intensitas (hyperkromik).

Komponen dari suatu spektrofotometer berkas tunggal :
1. Suatu sumber energy cahaya yang berkesinambungan yang meliputi daerah spectrum dimana instrument itu dirancang untuk beroperasi.
2. Suatu monokromator, yakni suatu piranti untuk mengecilkan pita sempit panjang-panjang gelombang dari spectrum lebar yang dipancarkan oleh sumber cahaya.
3. Suatu wadah sampel (kuvet)
4. Suatu detector, yang berupa transduser yang mengubah energy cahaya menjadi suatu isyarat listrik.
5. Suatu pengganda (amplifier), dan rangkaian yang berkaitan membuat isyarat listrik itu memadai untuk di baca.
6. Suatu system baca (piranti pembaca) yang memperagakan besarnya isyarat listrik, menyatakan dalam bentuk % Transmitan (% T) maupun Adsorbansi (A).