Sabtu, 15 Januari 2011

Infra Merah (Infra Red)

Spektro infra red dapat digunakan untuk mempelajari sifat-sifat bahan,dimana struktur zat yang diuji dapat diamati pada spektrofgram panjang gelombang vs transmittansi yang sangat spesifik dan merupakan sidik jari suatu molekul. Spektrogram zat yang diuji dibandingkan dengan spektrogram dari bahan yang sudah diketahui spktranya.

Spektrofotometri Infra Merah
Spektrofotometri Infra Red atau Infra Merah meruakan suatu metode yang mengamati interaksi molekul dengan radiasi elektromagnetik yang berada pada daerah panjang gelombang 0,75 – 1.000 µm atau pada Bilangan Gelombang 13.000 – 10 cm-1. Radiasi elektromagnetik dikemukakan pertama kali oleh James Clark Maxwell, yang menyatakan bahwa cahaya secara fisis merupakan gelombang elektromagnetik, artinya mempunyai vektor listrik dan vektor magnetik yang keduanya saling tegak lurus dengan arah rambatan.
Gambaran berkas radiasi elektromagnetik diperlihatkan pada Gambar 1 berikut :

Gambar 1: berkas radiasi elektromagnetik
Tabel 1 : Pembagian Gelombang Elektromagnetik

Gambar 2 : Pembagian Gelombang Elektromagnetik
Saat ini telah dikenal berbagai macam gelombang elektromagnetik dengan rentang panjang gelombang tertentu. Spektrum elektromagnetik merupakan kumpulan spektrum dari berbagai panjang gelombang. Berdasarkan pembagian daerah panjang gelombang pada Tabel 1 dan Gambar 2, sinar infra merah dibagi atas tiga daerah, yaitu:
Daerah Infra Merah dekat.
Daerah Infra Merah pertengahan.
Daerah infra merah jauh..
Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 – 50 µm atau pada bilangan gelombang 4.000 – 200 cm-1. Satuan yang sering digunakan dalam spektrofotometri infra merah adalah Bilangan Gelombang ( ) atau disebut juga sebagai Kaiser.

Spektrofotometer Inframerah Transformasi Fourier
Pada dasarnya Spektrofotometer Fourier Transform Infra Red (disingkat FTIR) adalah sama dengan Spektrofotometer Infra Red disperse, yang membedakannya adalah pengembangan pada sistim optiknya sebelum berkas sinar infra merah melewati contoh. Dasar pemikiran dari Spektrofotometer Fourier Transform Infra Red adalah dari persamaan gelombang yang dirumuskan oleh Jean Baptiste Joseph Fourier (1768-1830) seorang ahli matematika dari Perancis.
Dari deret Fourier tersebut intensitas gelombang dapat digambarkan sebagai daerah waktu atau daerah frekwensi. Perubahan gambaran intensitas gelobang radiasi elektromagnetik dari daerah waktu ke daerah frekwensi atau sebaliknya disebut Transformasi Fourier (Fourier Transform).
Selanjutnya pada sistim optik peralatan instrumen Fourier Transform Infra Red dipakai dasar daerah waktu yang non dispersif. Sebagai contoh aplikasi pemakaian gelombang radiasi elektromagnetik yang berdasarkan daerah waktu adalah interferometer yang dikemukakan oleh Albert Abraham Michelson (Jerman, 1831).

Cara Kerja Alat Spektrofotometer Fourier Transform Infra Red
Sistim optik Spektrofotometer Fourier Transform Infra Red seperti pada gambar disamping ini dilengkapi dengan cermin yang bergerak tegak lurus dan cermin yang diam. Dengan demikian radiasi infra merah akan menimbulkan perbedaan jarak yang ditempuh menuju cermin yang bergerak ( M ) dan jarak cermin yang diam ( F ). Perbedaan jarak tempuh radiasi tersebut adalah 2 yang selanjutnya disebut sebagai retardasi ( δ ). Hubungan antara intensitas radiasi IR yang diterima detektor terhadap retardasi disebut sebagai interferogram. Sedangkan sistim optik dari Spektrofotometer Infra Red yang didasarkan atas bekerjanya interferometer disebut sebagai sistim optik Fourier Transform Infra Red.
Pada sistim optik Fourier Transform Infra Red digunakan radiasi LASER (Light Amplification by Stimulated Emmission of Radiation) yang berfungsi sebagai radiasi yang diinterferensikan dengan radiasi infra merah agar sinyal radiasi infra merah yang diterima oleh detektor secara utuh dan lebih baik.
Detektor yang digunakan dalam Spektrofotometer Fourier Transform Infra Red adalah Tetra Glycerine Sulphate (disingkat TGS) atau Mercury Cadmium Telluride (disingkat MCT). Detektor MCT lebih banyak digunakan karena memiliki beberapa kelebihan dibandingkan detektor TGS, yaitu memberikan respon yang lebih baik pada frekwensi modulasi tinggi, lebih sensitif, lebih cepat, tidak dipengaruhi oleh temperatur, sangat selektif terhadap energi vibrasi yang diterima dari radiasi infra merah.

Cara Kerja Alat Spektrofotometer Fourier Transform Infra Red
Sistim optik Spektrofotometer Fourier Transform Infra Red seperti pada gambar disamping ini dilengkapi dengan cermin yang bergerak tegak lurus dan cermin yang diam. Dengan demikian radiasi infra merah akan menimbulkan perbedaan jarak yang ditempuh menuju cermin yang bergerak ( M ) dan jarak cermin yang diam ( F ). Perbedaan jarak tempuh radiasi tersebut adalah 2 yang selanjutnya disebut sebagai retardasi ( δ ). Hubungan antara intensitas radiasi IR yang diterima detektor terhadap retardasi disebut sebagai interferogram. Sedangkan sistim optik dari Spektrofotometer Infra Red yang didasarkan atas bekerjanya interferometer disebut sebagai sistim optik Fourier Transform Infra Red.
Pada sistim optik Fourier Transform Infra Red digunakan radiasi LASER (Light Amplification by Stimulated Emmission of Radiation) yang berfungsi sebagai radiasi yang diinterferensikan dengan radiasi infra merah agar sinyal radiasi infra merah yang diterima oleh detektor secara utuh dan lebih baik.
Detektor yang digunakan dalam Spektrofotometer Fourier Transform Infra Red adalah Tetra Glycerine Sulphate (disingkat TGS) atau Mercury Cadmium Telluride (disingkat MCT). Detektor MCT lebih banyak digunakan karena memiliki beberapa kelebihan dibandingkan detektor TGS, yaitu memberikan respon yang lebih baik pada frekwensi modulasi tinggi, lebih sensitif, lebih cepat, tidak dipengaruhi oleh temperatur, sangat selektif terhadap energi vibrasi yang diterima dari radiasi infra merah.

Interaksi Sinar Infra Merah Dengan Molekul

Bila ikatan bergetar, maka energi vibrasi secara terus menerus dan secara periodik berubah dari energi kinetik ke energi potensial dan sebaiknya. Jumlah energi total adalah sebanding dengan frekwensi vibrasi dan tetapan gaya ( k ) dari pegas dan massa ( m1 dan m2 ) dari dua atom yang terikat. Energi yang dimiliki oleh sinar infra merah hanya cukup kuat untuk mengadakan perubahan vibrasi.
Panjang gelombang atau bilangan gelombang dan kecepatan cahaya dihubungkan dengan frekwensi melalui bersamaan berikut : Energi yang timbul juga berbanding lurus dengan frekwesi dan digambarkan dengan persamaan Max Plank :
E = Energi, Joule

h = Tetapan Plank ; 6,6262 x 10-34 J.s

c = Kecepatan cahaya ; 3,0 x 1010 cm/detik

n = indeks bias (dalam keadaan vakum harga n = 1)

λ = panjang gelombang ; cm

f = frekwensi ; Hertz

Dalam spektroskopi infra merah panjang gelombang dan bilangan gelombang adalah nilai yang digunakan untuk menunjukkan posisi dalam spektrum serapan. Panjang gelombang biasanya diukur dalam mikron atau mikro meter ( オm ).


Sedangkan bilangan gelombang adalah frekwensi dibagi dengan kecepatan
cahaya, yaitu kebalikan dari panjang gelombang dalam satuan cm-1. Persamaan dari hubungan kedua hal tersebut diatas adalah :
c = kecepatan cahaya : 3,0 x 1010 cm/detik

k = tetapan gaya atau kuat ikat, dyne/cm

オ = massa tereduksi

m = massa atom, gram
Metode spektroskopi inframerah merupakan suatu metode yang meliputi teknik serapan (absorption), teknik emisi (emission), teknik fluoresensi (fluorescence). Komponen medan listrik yang banyak berperan dalam spektroskopi umumnya hanya komponen medan listrik seperti dalam fenomena transmisi, pemantulan, pembiasan, dan penyerapan. Penemuan infra merah ditemukan pertama kali oleh William Herschel pada tahun 1800. Penelitian selanjutnya diteruskan oleh Young, Beer, Lambert dan Julius melakukan berbagai penelitian dengan menggunakan spektroskopi inframerah. Pada tahun 1892 Julius menemukan dan membuktikan adanya hubungan antara struktur molekul dengan inframerah dengan ditemukannya gugus metil dalam suatu molekul akan memberikan serapan karakteristik yang tidak dipengaruhi oleh susunan molekulnya. Penyerapan gelombang elektromagnetik dapat menyebabkan terjadinya eksitasi tingkat-tingkat energi dalam molekul. Dapat berupa eksitasi elektronik, vibrasi, atau rotasi. Rumus yang digunakan untuk menghitung besarnya energi yang diserap oleh ikatan pada gugus fungsi adalah:
• E = h.ν = h.C /λ = h.C / v
• E = energi yang diserap
• h = tetapan Planck = 6,626 x 10-34 Joule.det
• v = frekuensi
• C = kecepatan cahaya = 2,998 x 108 m/det
• λ = panjang gelombang
• ν = bilangan gelombang
Dasar Spektroskopi Infra Merah dikemukakan oleh Hooke dan didasarkan atas senyawa yang terdiri atas dua atom atau diatom yang digambarkan dengan dua buah bola yang saling terikat oleh pegas seperti tampak pada gambar disamping ini. Jika pegas direntangkan atau ditekan pada jarak keseimbangan tersebut maka energi potensial dari sistim tersebut akan naik.
Setiap senyawa pada keadaan tertentu telah mempunyai tiga macam gerak, yaitu :
1. Gerak Translasi, yaitu perpindahan dari satu titik ke titik lain.
2. Gerak Rotasi, yaitu berputar pada porosnya, dan
3. Gerak Vibrasi, yaitu bergetar pada tempatnya..
Metode Spektroskopi inframerah ini dapat digunakan untuk mengidentifikasi suatu senyawa yang belum diketahui,karena spektrum yang dihasilkan spesifik untuk senyawa tersebut. Metode ini banyak digunakan karena:
• a. Cepat dan relatif murah
• b. Dapat digunakan untuk mengidentifikasi gugus fungsional dalam molekul
• c. Spektrum inframerah yang dihasilkan oleh suatu senyawa adalah khas dan oleh karena itu dapat menyajikan sebuah fingerprint (sidik jari) untuk senyawa tersebut.

Tabel . Serapan Khas Beberapa Gugus fungsi



Jenis Vibrasi Molekul
Ada dua jenis vibrasi yaitu:
• 1. Vibrasi ulur (Stretching Vibration), yaitu vibrasi yang mengakibatkan perubahan panjang ikatan suatu ikatan
• 2. Vibrasi tekuk (Bending Vibrations), yaitu vibrasi yang mengakibatkan perubahan sudut ikatan antara dua ikatan
Vibrasi tekuk itu sendiri dibagi lagi menjadi empat:
• 1. Scissoring
• 2. Rocking
• 3. Wagging
• 4. Twisting

Perubahan Energi Vibrasi
Atom-atom di dalam molekul tidak dalam keadaan diam, tetapi biasanya terjadi peristiwa vibrasi. Hal ini bergantung pada atom-atom dan kekuatan ikatan yang menghubungkannya. Vibrasi molekul sangat khas untuk suatu molekul tertentu dan biasanya disebut vibrasi finger print. Vibrasi molekul dapat digolongkan atas dua golongan besar, yaitu :
1. Vibrasi Regangan (Streching)
2. Vibrasi Bengkokan (Bending)

Vibrasi Regangan (Streching)
Dalam vibrasi ini atom bergerak terus sepanjang ikatan yang menghubungkannya sehingga akan terjadi perubahan jarak antara keduanya, walaupun sudut ikatan tidak berubah. Vibrasi regangan ada dua macam, yaitu:
1. Regangan Simetri, unit struktur bergerak bersamaan dan searah dalam satu bidang datar.
2. Regangan Asimetri, unit struktur bergerak bersamaan dan tidak searah tetapi masih dalam satu bidang datar.

Vibrasi Bengkokan (Bending)
Jika sistim tiga atom merupakan bagian dari sebuah molekul yang lebih besar, maka dapat menimbulkan vibrasi bengkokan atau vibrasi deformasi yang mempengaruhi osilasi atom atau molekul secara keseluruhan. Vibrasi bengkokan ini terbagi menjadi empat jenis, yaitu :
1. Vibrasi Goyangan (Rocking), unit struktur bergerak mengayun asimetri tetapi masih dalam bidang datar.
2. Vibrasi Guntingan (Scissoring), unit struktur bergerak mengayun simetri dan masih dalam bidang datar.
3. Vibrasi Kibasan (Wagging), unit struktur bergerak mengibas keluar dari bidang datar.
4. Vibrasi Pelintiran (Twisting), unit struktur berputar mengelilingi ikatan yang menghubungkan dengan molekul induk dan berada di dalam bidang datar.

Penggunaan dan Aplikasi
Spektroskopi inframerah biasanya digunakan untuk penelitian dan digunakan dalam industri yang sederhana dengan teknik yang sederhana dan untuk mengontrol kualitas. Alat spektroskopi inframerah cukup kecil dan mudah dibawa kemana-mana dan kapanpun dapat digunakan. Dengan meningkatnya teknologi komputer memberikan hasil yang lebih baik. Spektroskopi inframerah mempunyai ketepatan yang tinggi pada aplikasi kimia organik dan anorganik. Spektroskopi inframerah juga sukses kegunaannya dalam semikonduktor mikroelektronik: untuk contoh, spektroskopi inframerah dapat digunakan untu semikonduktor seperti silikon, gallium arsenida, gallium nitrida, zinc selenida, silikon amorp, silikon nitrida, dan sebagainya.


Efek isotop
Isotop yang berbeda memberikan bilangan gelombang yang berbeda pada spektroskopi inframerah. Seperti contoh frekuensi regangan O-O memberikan nilai 832 dan 788 cm -1 untuk ν(16O-16O) dan ν(18O-18O) melalui hubungan O-O sebagai sebuah spring, bilangan gelombang,ν dapat dihitung:

dimana k nilai konstan untuk ikatan, dan μ massa tereduksi untuk sistem A-B

(mi massa dari atom i).
Massa reduksi untuk 16O-16O dan 18O-18O dapat diperkirakan antara 8 dan 9. Sehingga


Daerah Identifikasi
Vibrasi yang digunakan untuk identifikasi adalah vibrasi bengkokan, khususnya goyangan (rocking), yaitu yang berada di daerah bilangan gelombang 2000 ・400 cm-1. Karena di daerah antara 4000 ・2000 cm-1 merupakan daerah yang khusus yang berguna untuk identifkasi gugus fungsional. Daerah ini menunjukkan absorbsi yang disebabkan oleh vibrasi regangan. Sedangkan daerah antara 2000 ・400 cm-1 seringkali sangat rumit, karena vibrasi regangan maupun bengkokan mengakibatkan absorbsi pada daerah tersebut.
Dalam daerah 2000 ・400 cm-1 tiap senyawa organik mempunyai absorbsi yang unik, sehingga daerah tersebut sering juga disebut sebagai daerah sidik jari (fingerprint region). Meskipun pada daerah 4000 ・2000 cm-1 menunjukkan absorbsi yang sama, pada daerah 2000 ・400 cm-1 juga harus menunjukkan pola yang sama sehingga dapat disimpulkan bahwa dua senyawa adalah sama.

Penafsiran Spektrum Inframerah
Untuk penafsiran spektrum inframerah tidak ada aturan kaku, namun syarat-syarat tertentu yang harus dipenuhi sebagai upaya untuk menafsirkan suatu
spektrum adalah
Spektrum harus terselesaikan dan intensitas cukup memadai
Spektrum diperoleh dari senyawa murni
Spektrofotometer harus dikalibrasi sehingga pita yang teramati sesuai dengan frekuensi atau panjang gelombangnya. Kalibrasi dapat dilakukan dengan menggunakan standar yang dapat diandalkan, seperti polistirena film.
Metode persiapan sampel harus ditentukan. Jika dalam bentuk larutan, maka konsentrasi larutan dan ketebalan sel harus ditunjukkan.
Penyerapan sinar uv-vis dibatasi pd sejumlah gugus fungsional/gugus kromofor (gugus dengan ikatan tidak jenuh) yang mengandung electron valensi dengan tingkat eksitasi yang rendah. Dengan melibatkan 3 jenis electron yaitu : sigma, phi dan non bonding electron. Kromofor-kromofor organic seperti karbonil, alken, azo, nitrat dan karboksil mampu menyerap sinar ultraviolet dan sinar tampak. Panjang gelombang maksimalnya dapat berubah sesuai dengan pelarut yang digunakan. Auksokrom adalah gugus fungsional yang mempunyai elekron bebas, seperti hidroksil, metoksi dan amina. Terikatnya gugus auksokrom pada gugus kromofor akan mengakibatkan pergeseran pita absorpsi menuju ke panjang gelombang yang lebih besar (bathokromik) yang disertai dengan peningkatan intensitas (hyperkromik).

Komponen dari suatu spektrofotometer berkas tunggal :
1. Suatu sumber energy cahaya yang berkesinambungan yang meliputi daerah spectrum dimana instrument itu dirancang untuk beroperasi.
2. Suatu monokromator, yakni suatu piranti untuk mengecilkan pita sempit panjang-panjang gelombang dari spectrum lebar yang dipancarkan oleh sumber cahaya.
3. Suatu wadah sampel (kuvet)
4. Suatu detector, yang berupa transduser yang mengubah energy cahaya menjadi suatu isyarat listrik.
5. Suatu pengganda (amplifier), dan rangkaian yang berkaitan membuat isyarat listrik itu memadai untuk di baca.
6. Suatu system baca (piranti pembaca) yang memperagakan besarnya isyarat listrik, menyatakan dalam bentuk % Transmitan (% T) maupun Adsorbansi (A).

Tidak ada komentar:

Poskan Komentar

semoga membantu

^_^